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Overview

Problem

e Tradeoff between noise and radiation dose for CT warrants deep learning approaches
e Sclf-supervised learning and VAEs can improve denoising performance

SSWL-IDN (Self-Supervised Window Leveling Image DeNoising)

e Novel, task-relevant SSL surrogate of window-level prediction for denoising
e Code: https://github.com/ayaanzhaque/SSWL-IDN

SSWL-IDN

Full Dose

Details
e Mayo CT dataset, abdomen and chest

Dose
e Trained and evaluated at 5% ultra low dose for
thorough denoising evaluation
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SSWL outperforms baseline and SOTA methods for denoising ROIs

Pretext Downstream

Relationship between window-leveling and CT denoising S
LDCT (0.7586) FDCT

RED-CNN and RVAE produce more accurate FDCT predictions than counterparts
Quantitative Results

RED-CNN (0.8790) rEpD.oNN+sswL (nsao1; RVAE (0.8851) RVAE+SSWL (0.9023)

Denoising:
e We map non-window-leveled images to window-leveled images as a surrogate task
e Similarity 1n transformations results in a task-relevant surrogate
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SSWL and RVAE outperform baseline and SOTA counterparts

Conclusion and References

Schematic of our SSWL-IDN model e SSWL outperforms many SOTA methods, proving a task-relevant surrogate 1s important

e Future work includes joint surrogate and downstream training and 3D applications
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Training:
e Residual VAE: RED-CNN [1] + VAEs, improves generalization, reduces overfitting
e Hybrid loss function between MSE and Perceptual Loss


https://github.com/ayaanzhaque/SSWL-IDN
https://www.aapm.org/grandchallenge/lowdosect/

